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Disclaimer 

The contents of this report reflect the views of the author who is responsible for the facts and the 

accuracy of the data presented herein. The contents of the report do not reflect the official views or 

policies of the North Carolina Department of Transportation or the Federal Highway Administration. This 

report does not constitute a standard, specification, or regulation.   
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Summary 

Drivers are finding themselves in higher traffic congestion as the number of active drivers increases 

exponentially with growing populations in urban areas. Navigation aids are becoming more prevalent and 

essential to aid in avoiding these types of travel delays. Traffic and navigation-based applications have 

created a way for users to have real time information on potential delays and alternate routes. Even with 

a passive mode enabled, to ensure higher safety for drivers, average speed can be shared which gives 

indications of route congestion and delays. In an active mode in-depth detail about conditions and traffic 

incidents become available to other users but this has an associated risk of driver distractions.  

Advanced Traffic Signal Control strategies are being adopted by public agencies responsible for 

maintaining signalized arterials to address the growing volume of traffic on these roads. At the same time, 

these agencies are collecting more and more data from a variety of sources, which requires careful 

analysis to be effectively used. As a result, most traffic signal systems and agency arterial programs tend 

to focus on one type of data at a time. For example, traffic controllers might use point sensors or other 

detection methods to actuate phases, while many emerging data sources provide more detailed 

information about the overall traffic state. 

One potential benefit of incorporating more accurate traffic state estimates into advanced traffic 

controllers is increased accuracy in optimization. By considering a wider range of data, traffic controllers 

can make more informed decisions about how to adjust signal timing and other factors in order to improve 

traffic flow. This could lead to a variety of benefits, such as reduced congestion, shorter travel times, and 

improved safety on the roads. 

However, incorporating more data into traffic signal systems also presents some challenges. For one, it 

can be difficult to integrate data from a variety of sources, particularly if these sources use different 

formats or have different levels of granularity. Additionally, the sheer volume of data being collected can 

make it difficult for agencies to effectively analyze and use this information. As a result, it is important for 

agencies to have the necessary tools and resources to effectively manage and make use of the data they 

are collecting. 

Overall, the adoption of Advanced Traffic Signal Control strategies and the increasing use of data in traffic 

management are important developments that have the potential to improve traffic flow and safety on our 

roads. However, these advances also bring with them a number of challenges, which must be carefully 

managed in order to realize their full benefits. 

Collection of real-world data can present unique challenges. In the case of the North Carolina Department 

of Transportation this has been a particularly challenging task in the recent past. The COVID-19 

pandemic and resulting quarantine orders reduced traffic state volumes dramatically. The absence of 

normal traffic patterns became a driving element in pursuing alternative approaches, in this case synthetic 

data. Synthesized data are those that are created in a digital environment with sufficient resemblance to 

real world data that a deep learning model trained with synthetic data performs well when presented with 

real data. Primary advantages to synthesizing data include machine learning model training in the 

absence of real data, flexible experimentation with different scenario-based traffic states, and streamlined 

production-ready model development processes. 

The purpose of this project was to develop software based on deep neural networks (DNNs), also known 

as deep learning, to automatically convert video into structured and more useful data formats. This 

software will provide information on driving conditions and traffic incidents and will be able to fuse this 
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data with inferences from loop detectors and Bluetooth sensors. There are many potential benefits to this 

approach. 

One of the main benefits of this software is its ability to reduce the amount of data that needs to be 

processed and stored. Lengthy segments of video often contain a lot of information that is not particularly 

useful, so by converting the video into a more structured format, it is possible to significantly reduce the 

size of the data while still retaining the most relevant information. This data, when fused with other sensor 

data, can be used by advanced traffic controllers, travelers, or to measure arterial performance. 

Another benefit of this software is its ability to automatically mine big video and other sensory data saved 

over days and weeks to detect traffic incidents. This can support decision-making and reduce the manual 

efforts of operators by automatically extracting useful information from large amounts of data. 

The research products of this project include a video analytics pipeline and robust data fusion techniques 

at the edge, as well as a prototype application that integrates software and hardware into a simulated 

advanced traffic signal controller that is designed to work with actual traffic control hardware. 
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Introduction 

As urban populations continue to grow, traffic congestion has become an increasingly pressing issue for 

drivers, leading to a greater demand for advanced navigation aids and traffic management solutions. 

Real-time traffic information, advanced traffic signal control strategies, and the integration of various data 

sources can play a crucial role in improving traffic flow and safety. However, these advancements also 

present challenges, such as data integration and effective analysis. This paper explores the development 

of deep neural network-based software that converts video into structured data formats, providing 

valuable information on driving conditions and traffic incidents. The use of synthetic data in response to 

the absence of normal traffic patterns during the COVID-19 pandemic is also examined. The research 

products of this project include a video analytics pipeline, robust data fusion techniques, and a prototype 

application designed to work with actual traffic control hardware, ultimately aiming to enhance traffic flow 

and safety on our roads. 

Background  

Traffic flow theory is the study of how vehicles navigate highways and roads. The aim is to model the 

factors that change the flow of traffic (i.e., number of vehicles that are present, their spacing, and speed) 

and the physical aspects of the road and the environment around the road and vehicles. Mathematical 

models, simulation tools, and data analysis techniques are leveraged to model and understand traffic 

flow. This allows traffic pattern analysis with the ability to examine how modifications to a road network or 

traffic conditions can affect traffic flow state [13]. Traffic flow theory is viewed through two main lenses: 

microscopic and macroscopic.  

At the microscopic level the focus is on individual vehicles and driver behavior. Key concepts in 

microscopic traffic flow are: 

 Vehicle Dynamics: Physical properties and behavior of single vehicles are observed. Properties 

include acceleration/deceleration and the way that the vehicle turns. 

 

 Driver Behavior: Examines the way drivers choose their speed and lane positions and how 

these behaviors change in various road conditions, the driver’s emotional state, and driver 

perception of the environment. 

 

 Interactions Between Vehicles: A vehicle’s influence of surrounding vehicles through position, 

driver gestures, and signaling are referred to as interactions between vehicles. 

 

 Traffic Control Devices: Traffic lights, road signs, and markings on the pavement are a few 

examples of these devices. 

 

 Traffic Flow Models: The previously mentioned mathematical models that attempt to illustrate 

and predict the way vehicles will move on a highway or road. These models allow analysis of 

traffic patterns and the evaluation of variations in traffic control strategies. 

 

Macroscopic traffic flow zooms out from the individual vehicle(s) to observe the big picture of many 

vehicles and the way they are moving overall. The aim here is to model and understand the factors that 

change the flow of traffic. These factors include the total number of vehicles in a particular road network, 
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speed and spacing, and the physical characteristics of the environment and road. The core concepts of 

macroscopic traffic flow theory are: 

 Traffic Flow Characteristics: Traffic flow characteristics look at the overall movement of 

vehicles in each road, highway, or network. Flow rate, or the number of vehicles passing a given 

point over a specified interval, and the density, or number of vehicles that are in each length of 

road at a point in time, are common tools for observation and measurement. 

 

 Traffic Flow Models: Traffic flow models are like microscopic traffic flow models just on a much 

larger scale. 

 

 Capacity: Maximum number of vehicles that a road can handle without generating a delay or 

creating congestion. 

 

 Congestion: High enough density of traffic that it causes speed reduction and longer travel 

times. 

 

 Traffic Control Strategies: The plans and responses used to mitigate adverse traffic conditions. 

These can be thoughtful placement of traffic signals, ramp metering, and lane control. 

State of the Art, Science, and Practice 

Macroscopic traffic states are defined through three primary measures: flow, density, and speed. These 

measures are closely related, with flow being equal to the product of speed and density. Constraints that 

impact one or more of these measures can induce changes in the traffic state, which can be propagated 

under shockwave theory [2]. However, it can be particularly challenging to model or track interrupted flow 

conditions, particularly due to additional constraints and the severe delays that drivers often experience 

on arterial roads. 

 

According to the Federal Highway Administration, there are over 330,000 traffic signals in the United 

States. Of these, over 75% could be improved by updating their equipment or timing plans. Poor traffic 

signal timing is a significant contributor to delays on major roadways, accounting for nearly 300 million 

vehicle-hours of delay. In practice, the measurement of performance in arterials has been led by 

Automated Traffic Signal Performance Measures (ATSPMs), which use high-resolution loop detector and 

traffic signal controller data for computation [12]. 

 

In recent years, there has been a significant shift in the development of signal control algorithms, 

particularly in the context of connected and autonomous vehicles (CAVs). New signal control methods 

have been developed that model cooperative control, as well as control in a partial information 

environment. These approaches have the potential to improve traffic flow and reduce delays on arterial 

roads and will likely play a key role in the future of transportation. 

 

Vehicle detection is a crucial step in the vision-based traffic monitoring process using a static camera. 

Various techniques, such as frame differencing, background subtraction, optical flow, and GMM, have 

been employed for vehicle detection on highways. Following vehicle detection, tracking moving objects 

over time in an image sequence is typically performed using features such as points, lines, or blobs. 
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Common tracking algorithms include Kalman filter, adaptive Kalman filter, and particle filter [16]. The final 

step in video processing is vehicle classification, which can be performed using deterministic methods, 

stochastic methods, artificial neural networks, and Support Vector Machines. However, factors such as 

perspective effects, shadows, camera vibration, and lighting changes can lead to occlusions, which can 

greatly affect system performance. Therefore, occlusion handling is an important step after vehicle 

detection. Techniques for reducing occlusions include line-based algorithms, fusion of image frames from 

multiple cameras, algorithms based on car windshield appearance, and feature-based tracking. 

 

In this context, vehicle detection can refer to various sensors and applications, such as driver assistance 

systems utilizing a moving camera, or traffic surveillance systems using a static camera. The use of a 

static camera in traffic surveillance allows for the detection of vehicles as the first step in the vision-based 

traffic monitoring process [9]. 

 

Several techniques have been proposed and implemented for vehicle detection, including frame 

differencing, background subtraction, optical flow, and Gaussian Mixture Models (GMM). These 

techniques have been successfully applied in highway scenarios, with some variations in performance 

depending on the specific conditions and parameters used. 

 

After detecting vehicles, the next step is to track them over time in an image sequence. This is typically 

achieved by matching objects in consecutive frames using features such as points, lines, or blobs. From 

these track sequences, different object behaviors can be inferred. In literature, some authors have 

proposed real-time vision-based traffic flow monitoring systems, which use flow models to count vehicles 

traveling on each lane and to produce traffic statistics. The most widely used tracking algorithms are 

Kalman filter, adaptive Kalman filter, and particle filter [16]. 

 

Finally, vehicle classification is performed to identify the type of vehicle, such as a car or a truck. 

Automatic classification methods can be divided into deterministic methods, stochastic methods, artificial 

neural networks [13], and Support Vector Machine (SVM). These methods have been used in various 

applications, and their performance can vary depending on the specific conditions and parameters used. 

 

It is worth noting that occlusion handling is an important step in the process, as multiple vehicles can be 

detected as a single vehicle due to perspective effects, shadows, camera vibration, lighting changes, and 

other factors. To tackle this problem, several methods have been proposed in the literature, such as line-

based algorithms, fusion of image frames acquired from multiple cameras [6], and algorithms based on 

car windshield appearance, vehicle corner as feature, and feature-based tracking. These methods can 

improve the performance of the system, allowing for more accurate vehicle detection and classification. 

 

The problem of vehicle re-identification (V-reID) is the identification of a particular vehicle as the same 

object as one observed on a previous occasion, using multiple cameras with non-overlapping views. This 

problem has emerged due to the increasing demand for public safety and the widespread use of large 

camera networks in road networks, university campuses, and streets[19]. Traditional loop detectors and 

other sensors are expensive and impractical for V-reID in such diverse environments, and it is also a 

laborious task for security personnel to manually identify a vehicle of interest and track it across multiple 

cameras. 
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Computer vision can automate the task of V-reID, which can be broken down into two major modules: 

vehicle detection and vehicle tracking through multiple cameras. Vehicle detection is a well-established 

task, but V-reID presents a more challenging problem, as it requires correct matching of multiple images 

of the same vehicle under intense variations in appearance, illumination, pose, and viewpoint. V-reID is 

considered a multi-camera tracking problem [24]. 

 

Despite the advances in vehicle detection and tracking, V-reID still presents several challenges. These 

include variations in viewpoint and pose, changes in lighting and weather conditions, and partial 

occlusions. In addition, the large number of vehicles present in the scene can make it difficult to 

accurately match a target vehicle across multiple cameras. 

 

Another challenge is the lack of large-scale benchmark datasets for V-reID. This makes it difficult to 

evaluate the performance of different algorithms and to compare the performance of different methods. 

 

In summary, V-reID is a challenging problem that requires the accurate identification of a target vehicle 

across multiple cameras with non-overlapping views. It is made difficult by variations in viewpoint, lighting, 

and partial occlusions, as well as the large number of vehicles present in the scene. The lack of large-

scale benchmark datasets makes it difficult to evaluate and compare the performance of different 

methods. 

Purpose and Scope 

In 2006, the United States Department of Transportation (USDOT) released the "National Strategy to 

Reduce Congestion on America's Transportation Network," citing congestion as a major threat to 

economic prosperity in the US due to its impact on fuel and time waste (FHWA, n.d.). Traditional methods 

for estimating traffic conditions, such as point-based sensors like inductive loops, piezoelectric sensors 

[8], magnetic loops, and probe-based data from GPS navigation, have been improved upon with the 

development of deep learning techniques and Deep Neural Networks (DNNs). 

The application of DNNs to automate traffic state estimation is advantageous for two reasons. First, video 

monitoring of traffic is widely used, and the information-rich nature of video makes it a valuable source of 

data for inference. Second, deep learning algorithms can learn from data without the need for hand-

crafted feature computing algorithms, which may not perform well on real-world data. Some real-world 

applications of deep learning in traffic state estimation have demonstrated success, but there is still room 

for improvement in terms of detection accuracy and video processing efficiency through edge computing 

technologies. 

In addition to the potential benefits outlined above, the use of DNNs in traffic state estimation can offer 

several other advantages. For example, DNNs can be trained to recognize patterns and make predictions 

based on past data, which can be useful in anticipating and mitigating traffic congestion. They can also be 

used to identify and classify different types of vehicles, pedestrians, and other objects in video footage, 

which can be useful in understanding the movements and behaviors of different road users (Zeng et al., 

2019). Furthermore, DNNs can analyze and extract information from large amounts of video data in real-

time, providing up-to-date insights into traffic conditions. Overall, the use of DNNs in traffic state 

estimation can enable more efficient and effective transportation management and decision-making. 
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The North Carolina Department of Transportation (NCDOT) manages more than 380 coordinated traffic 

signal systems that are modified based on performance through the COST program. This process, known 

as retiming, is often carried out by contractors and involves both simulation and field observation. COST 

is also using ATSPM open-source software as it updates its field equipment, which could signify a shift 

towards real-time management of signalized intersections. However, recent research has revealed 

significant gaps in several important ATSPM performance measures that could be addressed with 

additional data. 

To optimize the efficiency and effectiveness of traffic signal systems, NCDOT uses the COST program to 

periodically adjust the timing of the signals. This process, known as retiming, is carried out by contractors 

and involves both computer simulations and on-site observations to determine the most effective timing 

for the signals. In addition to retiming, NCDOT is also transitioning to the use of ATSPM software as it 

updates its field equipment. ATSPM (Advanced Traffic Signal Performance Measures) is an open-source 

software tool that can be used to monitor and manage traffic signals in real-time [3]. The implementation 

of ATSPM represents a potential shift towards real-time operations management of signalized 

intersections, which could allow for more efficient and responsive traffic control. 

However, recent research has identified gaps in many critical ATSPM performance measures, indicating 

that there may be room for improvement in the effectiveness of the software. One potential solution is to 

use supplemental data to improve these performance measures and enhance the overall performance of 

the traffic signal systems. 

This project aims to develop an edge computing deep learning software that utilizes video, loop detector, 

and Bluetooth sensor data to better estimate traffic states on arterials. The software outputs will be tested 

with traditional signal control and a CV-enabled signal control algorithm in VISSIM. The software uses 

cases include improved performance measures for integration into existing tools. 

like ATSPM, temporary deployment for signal retiming or loop detector calibration, and driver information 

through connected vehicle applications. 

By integrating edge computing deep learning software with video, loop detector, and Bluetooth sensor 

data, this project seeks to provide a more comprehensive and accurate understanding of traffic 

conditions. As a result, transportation agencies like NCDOT can make more informed decisions when 

managing and optimizing traffic signal systems[2]. 

The integration of this advanced technology with existing tools like ATSPM has the potential to 

revolutionize traffic management, making it more efficient, responsive, and adaptive to real-time 

conditions [3]. In addition, connected vehicle applications can benefit from the improved traffic state 

estimation, providing drivers with more accurate and timely information about road conditions and 

potential congestion[11]. 

The combination of DNNs, video monitoring, and other advanced sensing technologies offers significant 

potential for improving traffic state estimation and overall transportation management[12]. As these 

technologies continue to advance and mature, they will likely play an increasingly important role in 

mitigating the negative impacts of congestion on America's transportation network, leading to a more 

efficient, sustainable, and prosperous future for all. 
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Research Approach 

We categorize vision-based methods into two types: hand-crafted feature-based methods and deep 

feature-based methods. 

Hand-crafted feature-based methods involve extracting properties from the image using various 

techniques that consider the information in the image. For instance, edges and corners are simple 

features that can be extracted from images. Many researchers have explored the use of appearance 

descriptors for Vehicle Re-Identification (V-reID), including Woesler (2003)[19], Shan et al. [16], Khan et 

al. (2014)[8], Ferencz et al. (2005)[5], Shan et al. (2008)[17], Zheng et al. (2015)[22], Zapletal (2016)[23], 

and Liu et al. (2016b)[14]. These methods extract discriminatory information from the query vehicle 

image. Woesler (2003)[19] extracted 3D vehicle models and color information from the top plane of the 

vehicle for V-reID. Shan et al. (2005)[17] proposed a feature vector composed of edge-map distances 

between the query vehicle image and images of other vehicles in the same camera view and trained a 

classifier on the extracted feature vectors from both same and different vehicles. Ferencz et al. (2005)[5] 

trained a classifier using image patches from the same and different vehicles, consisting of various 

features including position, edge contrast, and patch energy. Shan et al. (2008)[17] proposed an 

unsupervised algorithm for matching road vehicles between two non-overlapping cameras. 

Deep learning techniques have been applied in various areas of vehicle recognition, including CNN-

based methods by Hu et al. (2015)[6] and Ramnath et al. (2014)[15], vehicle categorization and 

verification by Yang et al. (2015)[20], object categorization by Krause et al. (2013)[10], and recognition by 

Xiang et al. (2015)[21]. Liu et al. (2016)[14] utilized large-scale bounding boxes for V-reID and combined 

color, texture, and high-level semantic information extracted by a deep neural network. For V-reID, Liu et 

al. (2016)[14] proposed two networks: a Convolutional Neural Network (CNN) for learning appearance 

attributes and a Siamese Neural Network (SNN) for verifying license plate numbers of vehicles. The CNN 

used a fusion model of low-level and high-level features to identify similar vehicles, while the SNN was 

trained with many license plate images for verification, using deep distance metric learning based on 

Song et al. (2016)[18] which minimizes the distances between similar object pairs and maximizes the 

distances between different object pairs. 

The recent success in computer vision tasks such as image classification, object detection, tracking, and 

semantic segmentation is due to the convergence of three key factors. Firstly, the advancement of deep 

learning and other machine learning techniques like reinforcement learning for image processing and 

semantic segmentation. Secondly, the improvement in computing hardware, specifically game engines 

and high-performance GPUs, which enable deep learning at scale and photo-realistic rendering. Lastly, 

the availability of large, labeled, and ground-truth paired training datasets. Although deep learning 

algorithms and hardware have seen significant improvements in accuracy and efficiency, the lack of 

labeled data available for training is becoming a major hindrance to further advancements in computer 

vision. The absence of labeled ground-truth datasets, particularly for traffic and transportation modeling, 

has made the use of synthetic visual data generated through simulation a promising solution to overcome 

this limitation. While the use of synthetic simulated data offers potential benefits, it also poses the crucial 

challenge of transferring knowledge gained in the simulated world to the real world with the necessary 

accuracy and realism for effective decision-making and policymaking. Synthetic data generally does not 

generalize well to real-world data. The term "sim2real" refers to techniques aimed at improving the 

transfer of knowledge between the simulated and real worlds to enhance generalizability. 
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There are challenges in bridging the simulated with the real world. The real-world environment is often 

more intricate than its simulated counterpart and can present novel, infrequent events. This means that 

strategies that work well in simulations may not be effective in real-life situations. The difference between 

simulated and real-world environments, known as the "sim2real gap," can be caused by various 

perception inaccuracies, such as a simulator's inability to simulate reflective surfaces or weather 

conditions, and challenges in determining distance and depth using single cameras. Most simulators still 

lack the precision required for essential tasks, such as training robots or navigating autonomous vehicles. 

Although recent simulators, such as Air-sim, CARLA, RotorS, and others, are becoming better at creating 

more realistic scenarios, reducing the sim2real gap, they may also have high computational demands that 

are not ideal for advanced deep learning algorithms. 

There has been a recent surge in exploring innovative ways to generate and utilize synthetic visual data 

to reduce the sim2real gap. A comprehensive list of relevant papers in sim2real knowledge transfer can 

be found in the work by Zhao et al. [27]. For traffic state estimation, the most prominent approaches 

include: 

 

  

Figure 1: Simulation data in machine learning 

 Domain Randomization: Domain randomization is a promising solution for addressing 

the sim2real gap, particularly when real data is limited [2]–[8]. This "zero shot" transfer 

method trains a policy in the simulated domain without needing to adapt it in the target 

domain (real-world). Instead, domain randomization exposes the model to a variety of 
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conditions, making it robust to inaccuracies in the simulation. Domain randomization is 

based on the idea that, instead of modeling all the parameters of the real world, the 

simulation can be highly randomized to cover the real distribution of the real-world data. 

This way, instead of training the model on a single simulated domain, the simulator is 

randomized to expose the model to a wide range of domains during training, so the real 

world appears to the model as just another variation. Both visual and dynamic properties 

of the simulation can be randomized during training. Although domain randomization 

requires no real-world labels and reduces the high costs of data gathering and labeling, it 

has been shown to lead to suboptimal, high-variance policies due to uniform sampling of 

environmental parameters [9]. 

 

 Domain adaptation: A technique that tries to connect simulated and real-world 

environments when there is abundant simulated data but limited real-world data. The 

idea behind this method is that if there is a pair of related images in different domains, 

they should result in the same latent representation in a shared space. The aim is to 

merge the two feature spaces. Domain adaptation is mainly used in image classification 

and has shown promise in other areas. Neural network architectures have been 

developed to bridge the gap between simulation and reality by learning domain-invariant 

features. Some approaches assume that knowledge and experience in the source 

domain should be similar in the target domain and try to achieve this by modifying the 

reward function. The Bi-directional Domain Adaptation (BDA) approach addresses the 

gap in both directions - from real to simulation and from simulation to real - to bridge both 

visual and dynamics gaps. 

 

 Knowledge Distillation: An alternative method to address the sim2real gap. It involves 

transferring knowledge from a larger network, called the teacher, to a smaller network, 

referred to as the student. Zhou et al. employ task distillation in their framework to 

transfer models between source and target domains using recognition datasets [16]. 

They demonstrate that their method is capable of successfully transferring navigation 

policies between different simulators, such as ViZDoom, SuperTuxKart, and CARLA, 

which have vastly different environments. 

 

 Observation Adaptation: Another method to bridge the sim2real gap. It involves 

modifying the observations of the source domain, so they resemble the observations of 

the target domain. This approach has been successfully applied in the areas of video 

games and robot manipulation. However, it disregards the possibility that the source and 

target domains may have different dynamics. 

Apart from the aforementioned methods, other research focuses on applying transfer learning to specific 

aspects of traffic state estimation and traffic scene understanding. One area of focus is the integration of 

dynamic objects or actors into the simulation domain. Current methods typically insert actors into the 

simulation environment based on a set of pre-determined heuristics, which lack the capability to 

accurately represent the intricacies and diversity of real-world traffic scenes, resulting in a discrepancy 

between the simulated and actual traffic scenes. 
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Data augmentation techniques offer a solution to the challenge of incorporating dynamic objects into the 

simulation while preserving high-level control and physical realism. SceneGen is one such example, 

which is a neural autoregressive model that generates traffic scenes without the need for rules and 

heuristics. Given the state of the ego-vehicle and a detailed map of the surrounding area, SceneGen 

inserts actors of various classes into the scene and synthesizes their characteristics, such as size, 

orientation, and velocity [17]. GeoSim is another approach, which synthesizes novel urban driving scenes 

by compositing existing images with dynamic objects extracted from other scenes and rendered at 

different poses [18]. Pasevich et al. optimize data augmentation strategies for sim2real transfer to allow 

for domain-independent policy learning [19]. Other work addresses the inclusion of ambient conditions, 

such as fog, by augmenting real images depicting clear-weather outdoor scenes with synthetic fog, which 

are then processed by Convolutional Neural Networks [20]. 

In traffic models that consider pedestrians, realistic LiDAR simulations have integrated reconstructed 

pedestrian assets to greatly decrease the need for annotated real-world data for visual perception tasks 

[21]. Traditional methods depend on artists to produce both 3D assets and their movements to form a 

new scenario, but this method is not practical at larger scales. To address this, the challenge is framed as 

a minimum energy problem in a deep structured model that utilizes human shape prior knowledge, 

consistency with 2D poses extracted from images, and a ray-caster to ensure the reconstructed mesh 

aligns with LiDAR readings. 

An alternate method is Sim2SG, which is a scalable approach for transferring from simulation to real-

world for scene graph generation [22]. Sim2SG bridges the domain gap by breaking it down into 

disparities in appearance, label, and prediction between the domains. These differences are resolved by 

implementing pseudo-statistic based self-learning and adversarial learning techniques. In other 

strategies, generative models are constructed from realistic simulation software and embedded within a 

Bayesian error model to narrow the difference between simulation results and real-world data [23]. 

Anomaly detection is a prominent research area in the field of Intelligent Transportation Systems (ITS). To 

identify traffic anomalies, predicting the traffic state and comparing it with the current traffic state are 

commonly used techniques. It is essential to detect traffic anomalies in real-time, as both recurrent and 

non-recurrent anomalies can have a significant impact on traffic flow and consequently, future traffic 

states. Anomaly detection aims to detect anomalous or abnormal observations in each dataset. An 

anomaly is characterized as a pattern in the data that does not conform to a well-defined notion of normal 

behavior. 

The output of anomaly detection techniques is in the form of either anomaly scores, or binary labels 

assigned to each data instance in the data set. Based on the prior knowledge incorporated in the training 

data and underlying assumptions, various categories of anomaly detection techniques can be found in the 

literature, including unsupervised, supervised, and semi-supervised approaches. 

The unsupervised anomaly detection method is widely applicable as it does not require a labeled test 

data set. This approach assumes that normal instances occur much more frequently than anomalies in 

the test data. However, this assumption can lead to high false alarm rates if it does not hold. Several 

popular unsupervised learning methods have been used in the literature, including clustering algorithms 

(such as K-means clustering, fuzzy C-means, unsupervised niche clustering, expectation-maximization 

meta-algorithm (EM), unsupervised neural networks), dimension reduction algorithms (such as Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA)), deviations from association 

rules and frequent itemsets, and one-class support vector machine (OCSVM). 
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Semi-supervised learning aims to improve the classification performance of a model by either discarding 

unlabeled data and performing supervised learning or discarding labeled data and performing 

unsupervised learning. Learning from unlabeled data involves making certain assumptions such as 

continuity, cluster, and manifold. Generative mixture models, self-training, co-training, transductive 

support vector machines, and graph-based methods are among the most commonly used semi-

supervised learning methods in the literature. For a comprehensive overview of semi-supervised anomaly 

detection algorithms, we refer to [21]. 

A supervised learning approach is a suitable choice when the training data set contains labeled instances 

for both normal and abnormal classes. These techniques involve developing a predictive model for both 

normal and anomaly classes, which is subsequently used to score an unseen data set. However, this 

approach may not be feasible if the collection of labeled instances is costly or time-consuming. K-Nearest 

Neighbor, Bayesian networks, supervised neural network, decision tree, and support vector machine are 

among the supervised learning techniques commonly used in anomaly detection. A comprehensive 

review of unsupervised and supervised anomaly detection algorithms can be found in Semi-supervised 

learning methods combine a small amount of labeled data, typically for the normal class, with a large 

amount of unlabeled data during the training phase. This method can be advantageous when obtaining 

labeled instances is costly and time-consuming. 

The detection of traffic incidents is a crucial task in intelligent traffic monitoring systems. Both supervised 

and unsupervised anomaly detection techniques are widely used for this purpose. The approach is based 

on the principle of learning typical patterns in the given data and classifying irregularities as incidents. For 

example, Picarelli et al. in their study [16], address the problem of anomalous trajectory detection by 

utilizing one-class support vector machines (OCSVM) in an unsupervised framework. Similarly, Zhao et 

al. in (Zhao 2019) present an unsupervised framework for anomaly detection in traffic videos based on 

tracking trajectories. 

In order to achieve real-time anomaly detection, Aboah et al. [1] propose a decision-tree approach that 

characterizes anomalies using information from detections on foreground and background images. The 

proposed approach is capable of detecting various anomalies such as traffic accidents, which are critical 

events that require immediate attention. 

The detection of traffic incidents is a vital task in intelligent traffic monitoring systems. Both supervised 

and unsupervised anomaly detection techniques have been widely used for this purpose, and the 

proposed methods have shown promising results in real-time detection of various anomalies, including 

traffic accidents. 

Real-time anomaly detection research faces the challenge of relying on vehicle tracking algorithms, which 

can be difficult and computationally infeasible when tracking individual vehicles in a traffic scene. To 

address this challenge, Aboah et al. proposed a heuristic approach that uses the YOLOv5 network to 

build an object detection model and an augmented notation system, as well as an anomaly detection 

process based on background estimation, road mask extraction, and decision tree [1]. The proposed 

approach provides a more efficient and accurate method for detecting anomalies in traffic scenes, such 

as traffic accidents, which are critical events for intelligent transportation systems. 

Anomaly detection in traffic scenes is also crucial from the perspective of autonomous vehicles. In their 

study, Yuan et al. investigate anomaly detection problems in traffic scenes from the drivers' perspective. 
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They implement a Bayesian-based integration of anomaly detection on labeled video data, providing a 

comprehensive solution for detecting anomalies in traffic scenes[16]. 

In a similar vein, Shan et al. adopt an unsupervised learning approach to develop an automatic incident 

detection (AID) method that enables traffic state estimation and anomaly detection[18]. Their method 

utilizes statistical features extracted from traffic data to identify anomalies, and the results demonstrate 

the effectiveness of the proposed approach in detecting incidents in real-time. 

Real-time anomaly detection in traffic scenes is a challenging problem that requires efficient and accurate 

methods for detecting critical events. The proposed approaches, including heuristic-based methods, 

Bayesian-based integration, and unsupervised learning, provide promising solutions for anomaly 

detection in traffic scenes, which can help improve the safety and efficiency of intelligent transportation 

systems. 

The traffic state model is a probabilistic topic model applied to probe-vehicle-data (PCD) collected from 

the Shuto Expressway system in Tokyo[27]. The model's parameters are estimated using an expectation-

maximization meta-algorithm, which enables the detection of traffic incidents by measuring the 

differences between the estimated usual traffic state (based on historical data) and the current traffic 

estimate (based on real-time data) through divergence functions that return the degree of anomaly. By 

identifying unusual events that distinguish abnormal congestion (resulting from traffic incidents) from 

spontaneous congestion (resulting from road design and exceeded demand), this approach enables the 

detection of traffic incidents from PCD. 

Another approach for anomaly detection in videos is proposed in [15], which uses a future frame 

prediction framework. Given a stack of consecutive frames the framework predicts a future frame. For the 

prediction of the future frame, a score function based on Peak Signal to Noise Ratio (PSNR) is used for 

image quality assessment. This approach provides an effective way to detect anomalies in video data by 

predicting future frames and comparing them to the actual frames. 

Various approaches have been proposed for anomaly detection in transportation systems, including 

probabilistic topic models, supervised learning, and future frame prediction frameworks. These 

approaches enable the detection of anomalies in traffic data and video data, which are critical for 

improving the efficiency and safety of transportation systems. 

Data 

At the time of project kickoff, the COVID-19 pandemic was rampant, making it impossible to obtain real-

world data from sensors. To make progress on the prediction model, the team decided to simulate the 

real-world data using VISSIM simulation. This report presents an overview of the data collection process 

and the simulation methodology used to develop the prediction model. 

The road network was developed, and detectors were placed in the simulation to collect data. The 

trajectory data was collected from cameras, consisting of location and time information. Loop detector 

data was essentially the timestamp and a binary variable indicating whether the detector was occupied at 

that time. Bluetooth data comprised of MAC IDs of vehicles and the time they were detected. To mimic 

the real-world data, noise was introduced in each of the datasets. 

VISSIM simulation provided the data used to run the photorealistic simulation CARLA. CARLA can 

simulate real-world scenarios such as weather changes and construction work. The fusion algorithm 

developed in this study can be used in the case of disruption scenarios simulated in CARLA. The longest 
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link in the network is around 300m, and the loop and Bluetooth detectors are placed at both ends of the 

link. The penetration rate of Bluetooth is 3-4%. 

The team was able to collect simulated data using VISSIM simulation and develop a prediction model 

using CARLA simulation. The fusion algorithm developed can be used in disruption scenarios to provide 

accurate predictions. Overall, this approach has shown promise in developing accurate prediction models 

when real-world data is not available. 

Methodology 

To develop a prototype software design for advanced traffic signal control, a deep/machine learning AI 

approach is utilized. The key steps involved in this approach include data collection on real and simulated 

traffic, development of single stream video analytics, development of multi stream video analytics, and the 

creation of data fusion methods. These steps are designed to provide a comprehensive analysis of the 

traffic state, allowing for the optimization of traffic signal control algorithms. By testing the hypothesis that 

advanced traffic signal control algorithms perform better optimization with this traffic state estimate, we 

aim to improve the efficiency and safety of traffic flow on road networks.  

 

Figure 2: Scope of Work Diagram 

The focus of this project is software development, with machine learning taking center stage as the data-

driven approach for traffic state prediction. However, machine learning, and its most common form known 

as deep learning, requires a significant amount of labeled data to work effectively. Given the challenge of 

obtaining large sets of labeled data, this project aims to solve this problem by leveraging Sim2real 

technologies. 
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The project begins by using commercial software ESRI City or open-source software OpenStreet Map to 

create environment models, including roads and structures around roads, which become the inputs of a 

co-simulation. This co-simulation involves the synchronization of PTV VISSIM and CARLA to enable 

direct visualization of traffic behaviors in various environments and produce photo-realistic videos of 

scenes with traffic. This approach enables the procedural creation of large quantities of data for both 

training and validation of machine learning algorithms. 

Along with machine learning, this project also includes data fusion of video with Bluetooth sensor and 

loop detector data to compute inferences of traffic state parameters. The main areas of focus for this 

project are machine learning and data fusion, with the co-simulation approach providing the data required 

to make these approaches effective. Additionally, the estimated traffic parameters can be used to improve 

traffic signal control, as demonstrated in the bottom left part of the project picture. 

 

Figure 3: Research Workflow 

 

The tools the research team used are Carla 9.13 for high end graphic traffic simulation which sits on top 

of the Unreal graphics engine, for traffic control Vissim 2021, and for computer vision (CV) model training 

YOLOv5 and StrongSORT. 

Carla is an open-source traffic simulator developed by the Intelligent Systems Lab at the University of 

Technology in Delft, Netherlands. It is designed to simulate the interactions between autonomous 

vehicles, pedestrians, and other road users in urban environments. Carla is built on the Unreal Engine 

and includes a variety of features designed to make it easy to create, simulate, and test autonomous 

vehicle systems. 

Carla 9.13 was released in September 2021. Some of the key features of Carla 9.13 include: 
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 Realistic physics engine: Carla uses a realistic physics engine to simulate the behavior of 

vehicles and pedestrians in an urban environment. This includes the ability to model vehicle 

dynamics, such as tire friction, aerodynamics, and suspension, as well as pedestrian behavior 

and pedestrian-vehicle interactions. 

 

 Detailed 3D environments: Carla includes detailed 3D environments that can be used to simulate 

a variety of urban settings, including streets, intersections, traffic lights, and pedestrians. These 

environments can be customized to create a range of different scenarios, including traffic jams, 

pedestrian crossings, and complex intersections. 

 

 Vehicle and pedestrian models: Carla includes a range of different vehicle and pedestrian 

models, which can be used to simulate different types of road users. These models can be 

customized to reflect different vehicle and pedestrian characteristics, such as size, mass, and 

behavior. 

 

 Advanced sensor models: Carla includes advanced sensor models that simulate the behavior of 

different types of sensors, including cameras, radar, and lidar. These models can be used to test 

the performance of autonomous vehicle systems under different lighting and weather conditions. 

 

Overall, Carla is a powerful and flexible traffic simulator that is widely used by researchers, developers, 

and engineers working on autonomous vehicle systems. It is designed to provide a realistic and detailed 

simulation environment that can be used to test and evaluate a wide range of autonomous vehicle 

technologies. 

PTV Vissim is a traffic simulation software developed by PTV Group that allows users to model and 

analyze various aspects of traffic flow and transportation systems. It can be used to simulate the 

movement of vehicles on roads, highways, and other transportation networks, as well as to evaluate the 

impact of different traffic scenarios on traffic flow and performance. 

Vissim allows users to create and customize virtual models of real-world transportation systems, including 

road layouts, traffic signals, pedestrian crossings, and other elements. It includes a wide range of features 

and tools for analyzing traffic flow, including the ability to visualize traffic movements in real-time, 

generate reports and graphs, and compare the results of different scenarios. 

Vissim is widely used in the transportation planning and engineering fields and is often employed to help 

evaluate the impact of proposed infrastructure projects, traffic management strategies, and other 

transportation initiatives. It is also used in the development of intelligent transportation systems (ITS) and 

autonomous vehicle technologies. 

YOLO (You Only Look Once) is a popular object detection algorithm used in computer vision tasks. It is 

known for its fast and efficient performance, as well as its ability to detect and classify objects in real-time. 

YOLO v5 is the fifth version of the YOLO algorithm, and it builds upon the previous versions with a 

number of improvements and enhancements. Some key features of YOLO v5 include: 

 Improved accuracy: YOLO v5 is designed to be more accurate than previous versions, with 

a particular focus on detecting small and hard-to-detect objects. 
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 Faster processing: YOLO v5 is optimized for speed and can process images and video 

frames quickly, making it suitable for use in real-time applications. 

 

 Enhanced flexibility: YOLO v5 introduces several new features and options that allow users 

to customize and fine-tune the object detection process to suit their specific needs. 

 

 Improved object tracking: YOLO v5 includes enhanced object tracking capabilities, allowing 

it to follow objects as they move across frames in a video stream. 

 

YOLO v5 is a powerful and widely used object detection algorithm that is well-suited for a variety of 

computer vision tasks, including object detection, tracking, and classification in real-time. 

DeepSORT is a computer vision algorithm for tracking objects in video streams that combines object 

detection and object tracking techniques to accurately follow and identify objects as they move across 

frames in a video sequence. The "tracking-by-detection" paradigm, in which object detection is used to 

identify and track objects, is the optimal solution in terms of tracking accuracy. In this paper, the authors 

present an upgraded version of DeepSORT called StrongSORT, which sets new records for performance 

on the MOT17 and MOT20 datasets. They also propose two additional algorithms, called AFLink and 

GSI, which can be used to further refine the tracking results and improve accuracy.  

These algorithms can be plugged into various trackers with a minimal increase in computational cost. By 

integrating StrongSORT with AFLink and GSI, the authors have created a final tracker called 

StrongSORT++ that ranks first on MOT17 and MOT20 in terms of performance metrics and surpasses the 

second-place tracker by a significant margin. Code for the StrongSORT++ tracker will be released soon. 

Synthetic data collection was done with all the software tools previously mentioned. Carla 9.13 provided 

the ground truth data for vehicles and the traffic network. Vehicle data provided are the vehicle type(s), 

speed, and location. Vissim 2021 enabled the team to have a micro level of control over driver and traffic 

behavior. For instance, a specific lane can be blocked, and drivers can demonstrate various behaviors 

from aggressive and fast driving to cautious and slow. Vissim also enabled the modification of traffic 

density.  

Data fusion, the process of combining data from different and often non-homogenous sources, was 

performed across data from traffic ground truth data in Carla, created camera sensors in Carla, Bluetooth 

sensors in Vissim, and YOLOv5 deep model inferences.   

Technical work on PTV VISSIM and CARLA co-simulation has been successful in producing 

photorealistic data, including loop detector data. In conjunction with simulated Bluetooth sensor data, we 

have developed computer procedures to create annotations such as bounding boxes of vehicles and 

vehicle class labels, which are essential for training our machine learning algorithm. 

The ability to procedurally create data under a wide range of environmental conditions and simulated 

traffic states provided us with a significant amount of organized data that is readily available for data-

driven modeling. Our modeling efforts are based on the architecture of a state-of-the-art deep learning 

model for object detection called You Only Look Once (YOLO), which has been trained and validated with 

generated sim2real data. The trained model is capable of computing bounding box localizations of 

vehicles in this simulated environment. 
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By connecting vehicle detections and localizations over time, we can infer trajectories, which are then 

used to estimate traffic state parameters such as average speed, density, and more. These context-

aware algorithms are based on geometric information about the environment and road, providing us with 

a comprehensive analysis of traffic conditions. 

 

Figure 4: Domain Randomization - Side View 

It is important to note that any software development and modeling effort of this magnitude comes with 

inherent technical challenges, which we have successfully overcome to get to this point. Our students 

have been instrumental in leading the software development effort and have dedicated countless hours 

toward making this work.  
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Figure 5: Domain Randomization - Top View 

To generate high-quality synthetic training data for our models, it is critical to accurately simulate the 

sensor environment. While the goal is not to precisely replicate the real world, it is crucial to replicate the 

world as it would be perceived through the sensor that will be used in production or at test time. 

Therefore, accurate sensor simulation is a fundamental prerequisite for generating synthetic data that 

meets the requirements for model training. By ensuring that the synthetic data is as close as possible to 

the real-world sensor data, we can ensure that our models are trained on data that accurately reflects the 

conditions they will encounter in production or at test time, leading to more accurate and effective 

performance.  



Deep Learning Software for Traffic State Prediction 

26 

 

 

 

Figure 6: Sensor Setup and Traffic Network 

In clockwise order: picture on left shows four camera viewpoints of the same intersection. Computer 

vision algorithms fuse the objects from the four different views to improve traffic state estimation. Going 

clockwise the next image shows the entire network and the last image at the bottom right shows only the 

intersection portion of the network where the cameras are situated. 
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Future Extensions 

The goal of photorealistic rendering is to create a simulation that is visually indistinguishable from the 

sensor's perception of the real world. To achieve this, Tesla has developed a hybrid real-time raytracing 

and neural networking stack, which can produce highly realistic lighting and global illumination. One of the 

key challenges in achieving this level of realism is the elimination of aliasing artifacts such as "jaggies" or 

tearing, which can compromise the overall visual quality of the simulation. To overcome this, Tesla has 

implemented spatial-temporal anti-aliasing and neural rendering techniques, which ensure that the 

simulation is free from any visible aliasing artifacts. 

Another critical component of the simulation is the presence of diverse actors and locations. To address 

this need, Tesla has created a library containing thousands of unique assets, including vehicles, 

pedestrians, animals, and environmental elements. This enables the simulation to accurately reflect the 

real-world scenarios that the system will encounter in a variety of contexts. By providing a wide range of 

assets, Tesla ensures that the simulation is capable of accurately reflecting the conditions of different 

locations and scenarios, leading to more accurate and effective performance. 

To ensure that the simulation can accurately reflect a wide range of real-world scenarios, Tesla has 

developed a scalable scenario generation pipeline. This pipeline combines a variety of techniques, 

including hand-made scenarios, procedural generation, and adversarial ML-based synthetic scenarios. By 

leveraging this trifecta approach, Tesla can generate synthetic data that represents the broadest possible 

region of the true problem space, enabling more accurate and effective model training. 

In addition to generating synthetic scenarios, Tesla has also developed a scenario reconstruction 

pipeline, which is capable of replicating scenarios and environments anywhere there is a need. This 

pipeline enables Tesla to accurately recreate real-world scenarios in the simulation environment, enabling 

more accurate model testing and validation. By ensuring that the simulation environment is capable of 

accurately reflecting the real-world conditions that the system will encounter, Tesla can more effectively 

evaluate the performance of their models and identify areas for improvement. 

To begin, the link speed is calculated by utilizing data from individual sensors. Following this, a fusion 

algorithm is utilized to obtain an accurate estimation of the traffic state. 

Link speed using Loop detector 

The 300-meter segment is divided into smaller links, each measuring 50 meters. A time interval of 50 

seconds is assumed for data collection purposes. Link speeds are determined for each individual link 

utilizing available data. Loop detector speeds are calculated using the following formula, as outlined in 

reference [12]:  

s(j)=
𝑁(𝑗)

𝑇.𝑂(𝑗).𝑔
 

In the speed calculation formula, j is the index of the time period, s(j) represents the estimated space-

mean speed for the period, N represents the volume of vehicles per period, O represents the percentage 

of time that the loop is occupied by vehicles per interval (also known as lane occupancy), T represents 

the time length per period (which is set at 50 seconds), and g represents the speed estimation parameter. 

The value of g is equivalent to the reciprocal of the mean effective vehicle length (MEVL). 

Traditionally, the midpoint method is employed to calculate the speed between two loop detectors, but as 

the distance between the detectors increases, the error in the calculation also increases [12]. To 
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overcome this limitation, the weighted average of the two detectors is taken, with the weights determined 

by the distance from the loop detector. Specifically, the measurement from the detector further away from 

the link is given a lower weight. The following figure demonstrates how road segments are divided. The 

formula below is used to calculate the speed of links: 

N(j)= W(j)*N(j)_1+(1-W(j))*N(j)_10 

In the speed calculation formula, N(j)_1 represents the volume of vehicles recorded by the loop detector 

in link 1, while N(j)_10 represents the volume of vehicles recorded by the loop detector in link 10. The 

weight assigned to each link is determined by its proximity to the detector. For instance, when calculating 

the speed for link 2, a weight of 0.9 is assigned (i.e., W(j)=0.9), while a weight of 0.8 is assigned when 

calculating the speed for link 3 (i.e., W(j)=0.8). 

 

Figure 7: Road Segment Divided into Smaller Links 

The same formula and percentages used for calculating lane occupancy (O(j)) as described above are 

also applied in the calculation of corresponding parameters for links. Once these parameters are 

determined, the speed for each individual link can be calculated using the formula outlined previously. 

Utilizing this formula helps to disperse congestion over links where an actual loop detector is not installed, 

thereby providing a more comprehensive analysis of traffic conditions. 

Link speed using Bluetooth detector 

To identify the same MAC ID of a vehicle in the data collected from two consecutive Bluetooth detectors, 

a comparison is made between the two data sets. Once the MAC ID is identified, the time lapse between 

the two detectors is calculated. Using this information, the average speed of the vehicle can be calculated 

using the following formula: 

 

𝑆𝑖𝑗 = 𝐿𝑖𝑗/(𝑡𝑗 − 𝑡𝑖) 

 

In the formula for calculating the average speed of a vehicle between two consecutive Bluetooth 

detectors, S_ij represents the speed between the two detectors, L_ij represents the distance between the 

two detectors, t_j represents the time stamp at detector j, and t_i represents the time stamp at detector i. 

The difference between these time stamps gives the elapsed time for the vehicle to travel from detector i 

to detector j. 
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Link speed using trajectory data of cameras 

The trajectory data used in this study consists of distance and time data, which was analyzed to 

determine the instantaneous and average speeds between two points. To calculate the instantaneous 

speed between two points A and B in the trajectory, the tangent on the graph of distance vs. time was 

used. On the other hand, the average speed between the two points was determined by calculating the 

slope of the connecting line on points on the trajectory. 

In this study, we will be using the average speed between two points A and B in the trajectory calculated 

from slope. The locations A and B represent the start and end of the link, respectively, and the time 

interval is set to 50 seconds. The road segment was divided into links of 50 meters, and time intervals of 

50 seconds were used to calculate the average speeds. 

The corresponding time interval for each link was represented by a box in Figure 3, and all trajectories 

present in each box were identified. The average speed was determined for each trajectory using the 

method described above. Finally, the average speed for a particular link for a particular time interval was 

determined by averaging the speed calculated from all trajectories in the corresponding box. 

This method was employed to determine the speed for each link at every time interval using the trajectory 

data. The methodology used in this study provided an effective way to analyze trajectory data to 

determine the average speed between two points. By dividing the road segment into links of 50 meters 

and time intervals of 50 seconds, the average speed was calculated for each trajectory, providing 

valuable insights into the traffic patterns and conditions of the road segment. 

 
Figure 8: Trajectory of Vehicle 
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Figure 9: Trajectories on Divided Links and Time Intervals 

Fusion Algorithm 

The speed of a link from individual sensors is determined based on the methods described in previous 

sections. However, the frequency and accuracy of individual sensors can vary, which can present a 

challenge in obtaining accurate and consistent data. To address this issue, we have employed the 

SCAAT Kalman Filter algorithm, which allows us to use data from an active filter instead of waiting for 

data from all sensors. 

The SCAAT Kalman Filter algorithm is a powerful tool that can account for variations in the frequency and 

accuracy of sensor data, thereby providing 

more accurate and reliable results. The 

general setup of the Kalman Filter is shown in 

the following figure, which illustrates the 

mathematical models and algorithms used to 

estimate the true value of a measured 

variable based on noisy sensor data. 

By using the SCAAT Kalman Filter algorithm, we can improve the accuracy and consistency of the speed 

data obtained from individual sensors, even in cases where some sensors may be less reliable or have 

lower frequency. This allows us to monitor and manage traffic flow on the link, leading to better safety, 

efficiency, and overall performance more effectively.  

 

The fusion algorithm can account for 

different frequency and accuracy of data 

from different sensors.  
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Figure 10: General Setup of Kalman Filter 

The speed of link from individual sensors is determined as shown in previous sections. The frequency 

and accuracy of individual sensors can be different. To accommodate it, we have employed the SCAAT 

Kalman Filter algorithm which gives us liberty to use data from the active filter instead of waiting for data 

from all sensors. The general setup of the Kalman Filter is shown in the following figure: 

In the above equations, x_k is the state vector of the process at time k. A is the state transition matrix of 

the process from the state at k-1 to the state at k and is assumed to be stationary over time. B is 0 as 

there is no known external control input factor that affects the speed measurements. P is sensor specific 

error variances. Each sensor has its unique specific error variance value. Q is process noise. H is the 

connection matrix between the state vector and the measurement vector. 

The general Kalman Filter consists of prediction and correction steps. In the prediction step, the traffic 

speed is predicted using data from previous time step by employing a model. The predicted step is 

corrected using observation. This study modifies the correction step to accommodate the different 

frequency and accuracy of the data. The most recent active filter will be used for the correction step [9]. 

In our study, we have an average speed value for every 50 seconds which is obtained from both 

trajectory and loop data. As a result, we have added two correction steps based on these two datasets. 

Due to the low penetration rate of Bluetooth, it provides data at a sparse time interval. However, when it is 

available, its readings are incorporated in the Kalman filter. The flowchart of the fusion algorithm is 

depicted in Figure 5. Unlike the traditional KF where the measurement update step is carried out using 

data from only one sensor, the fusion mechanism utilizes data available from all the sensors at that time 

interval. Additionally, this algorithm does not necessarily require all measurements at the time. The 

algorithm performs the correction using available data, enabling it to accommodate inhomogeneous and 

infrequent data. 
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Carla 9.13 and Vissim 2021 Co-Simulation 

The process of co-simulating Carla 9.13 and Vissim 2021 with a StrongSORT computer vision model 

involves several steps. The first step is to ensure that both Carla 9.13 and Vissim 2021 are installed on 

the computer. Once both software programs are installed, the Carla 9.13 Python API must be installed as 

well. This API provides a script called "run_synchronization.py", which is used to synchronize the 

simulations of Carla and Vissim. 

In the next step, the StrongSORT computer vision model must be incorporated into the synchronization 

script. This can be done by modifying the script to include the necessary commands for running the 

model. The model can be used to detect and track vehicles in the simulation, which can then be used to 

inform the behavior of the simulated vehicles in both Carla and Vissim. 

Once the synchronization script has been modified to include the StrongSORT model, the simulations can 

be run. The script will start by launching the Vissim simulation and initializing the StrongSORT model. The 

Carla simulation will then be launched and synchronized with the Vissim simulation using the 

run_synchronization.py script. 

During the simulation, the StrongSORT model will continuously detect and track vehicles in the 

simulation. This information will be used to inform the behavior of the simulated vehicles in both Carla and 

Vissim. For example, the model can be used to 

detect collisions and to adjust the behavior of 

the simulated vehicles accordingly. 

Overall, co-simulating Carla 9.13 and Vissim 

2021 with a StrongSORT computer vision model 

can provide a powerful tool for simulating 

complex traffic scenarios. By incorporating 

computer vision technology into the simulations, 

it is possible to create more accurate and 

realistic simulations that can be used to inform a 

wide range of transportation-related decisions. 

 

  

Co-simulation, incorporating a StrongSORT 

computer vision model, enables the 

analysis of the interactions between 

autonomous vehicles and human-driven 

vehicles in a simulated environment, which 

can inform the development of safer and 

more efficient transportation systems. 
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Results 

To perform the co-simulation between Vissim and Carla 9.13, we ran simulations with 10 different traffic 

demands ranging from 250 to 2500 vehicles. The simulations were conducted to observe the impact of 

increasing traffic demand on the Town03 network in Carla 9.13. As the traffic demand increased, we 

observed an increase in the number of vehicles on the roads and longer travel times due to congestion. 

This highlights the importance of studying and understanding the impact of traffic demand on the 

efficiency of transportation systems, particularly in urban areas. 

After each simulation run, the output data from Carla and Vissim were compared against the vehicle 

speed and count data obtained from the Computer Vision (CV) algorithm. The ground truth values from 

Carla and Vissim were compared to the CV algorithm to determine the accuracy of the CV model. The 

error was calculated as the difference between the ground truth values and the CV algorithm outputs. 

This error was then used to evaluate the performance of the CV algorithm in different traffic conditions. By 

comparing the CV algorithm outputs against the ground truth values from the co-simulation, the accuracy 

of the CV algorithm was evaluated and any necessary improvements to the algorithm were identified. 

Co-simulation of traffic simulation and autonomous vehicle simulation is an important tool for testing and 

validating advanced driver assistance systems (ADAS) and autonomous vehicle technologies. With the 

increasing complexity of road traffic and the growing demand for efficient transportation solutions, co-

simulation offers a means of assessing the performance of such systems in a virtual environment before 

testing them in the real world. 

Carla 9.13 is one of the most popular open-source autonomous driving simulators, which provides a 

platform for researchers and developers to test and evaluate algorithms for perception, planning, and 

control of autonomous vehicles. Similarly, Vissim 2021 is a well-known traffic simulation software that is 

widely used for modeling and simulating road traffic. 

By co-simulating Vissim and Carla, researchers can study the interactions between autonomous vehicles 

and other traffic participants in various traffic scenarios, ranging from low to high traffic demands. In 

addition to analyzing the performance of ADAS and autonomous vehicles, this approach can also be 

used to optimize traffic flow and reduce traffic congestion. 

However, the accuracy of the simulation results depends on the fidelity of the models used in the 

simulation. One way to validate the simulation results is to compare them with ground truth data. In this 

study, ground truth data was obtained by comparing the vehicle speed and count data obtained from the 

co-simulation with the outputs of a computer vision model. The comparison was used to calculate the 

error of the computer vision model and to improve its accuracy. 

 

The appendix contains visualizations of the 10 increasing traffic demand simulations showing: 

 Error rate distribution per sensor 

 Vehicle counts per frame 

 Vehicle frequency by sensor and frame number 

 Error rate of predicted speeds 

 Error rate of predicted speeds per frame 

The first visualization shows the error rate distribution per sensor for each of the traffic demand 

simulations. The results indicate that the error rate tends to increase with higher traffic demand levels, 
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particularly for sensors located in areas with high traffic congestion. This suggests that the computer 

vision model may struggle to accurately detect and track vehicles in densely packed traffic scenarios. 

The second visualization presents the vehicle counts per frame for each of the simulations. As expected, 

the number of vehicles detected increases with higher traffic demand levels, and the overall pattern of 

traffic flow is consistent with the example network of Town03 used in this study. However, the accuracy of 

the computer vision model is crucial for ensuring that the vehicle counts are reliable, and the results of the 

first visualization suggest that the error rate may increase with higher traffic demand levels. 

The third visualization depicts the vehicle frequency by sensor and frame number, providing an overview 

of the traffic flow patterns throughout the simulation. The results show that traffic tends to be concentrated 

in certain areas of the network, particularly at intersections and bottlenecks, and the frequency of vehicles 

passing through each sensor varies depending on its location. 

The fourth visualization displays the error rate of predicted speeds for each of the simulations, indicating 

the accuracy of the computer vision model in estimating vehicle speeds. As with the first visualization, the 

results suggest that the error rate tends to increase with higher traffic demand levels, particularly for 

sensors located in congested areas. This indicates that the computer vision model may struggle to 

accurately track vehicles at higher speeds or in dense traffic scenarios. 

Finally, the fifth visualization shows the error rate of predicted speeds per frame, providing a detailed 

analysis of the accuracy of the computer vision model at different time intervals throughout the simulation. 

The results indicate that the error rate tends to fluctuate throughout the simulation, with higher error rates 

often occurring during periods of high traffic congestion or rapid changes in traffic flow. 

 

In Vissim, the simulation time is divided into small steps, which are referred to as "steps" in Python API. 

Each step is 0.05 seconds long, and every action that takes place during the simulation, such as a vehicle 

moving or a traffic light changing, is computed during one or more steps. These steps are then used to 

update the simulation state at a fixed interval, which is referred to as the frame rate. 

The frame rate in Vissim is determined by the user and can be set to any value. However, for the purpose 

of our simulations, we have set the frame rate to be equal to the step size of 0.05 seconds. Therefore, 

each frame number represents a tick by 0.05 seconds in the simulation. For instance, if the simulation 

runs for 6000 steps, then the simulation time would be 300 seconds, which is equivalent to 6 minutes. 

This step size and frame rate are important factors to consider when analyzing the simulation results. By 

examining the vehicle counts per frame and the vehicle frequency by sensor and frame number 

visualizations, we can determine the density of traffic at specific times during the simulation. Additionally, 

the error rate of predicted speeds per frame can help identify areas where the computer vision model may 

be struggling to accurately predict the speed of vehicles. Overall, understanding the step size and frame 

rate of the simulation is critical in interpreting the simulation results and making any necessary 

adjustments or improvements to the co-simulation setup. 
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Findings and Conclusions 

Based on the co-simulation between Vissim and Carla 9.13, we observed the impact of increasing traffic 

demand on the Town03 network in Carla 9.13. The simulations demonstrated a direct correlation between 

increased traffic demand and the number of vehicles on the roads, as well as longer travel times due to 

congestion. These results emphasize the importance of understanding the impact of traffic demand on 

the efficiency of transportation systems, particularly in urban areas. 

The performance of the Computer Vision (CV) algorithm was evaluated by comparing its outputs to the 

ground truth data obtained from the co-simulation. The error rate of the CV algorithm tended to increase 

with higher traffic demand levels, particularly for sensors located in areas with high traffic congestion. This 

suggests that the computer vision model may struggle to accurately detect and track vehicles in densely 

packed traffic scenarios. 

The visualizations provided in the appendix offer insights into the traffic flow patterns, vehicle counts, and 

error rates of predicted speeds throughout the simulation. These visualizations revealed that traffic tends 

to be concentrated in certain areas of the network, particularly at intersections and bottlenecks. 

Additionally, the error rate of predicted speeds fluctuated throughout the simulation, with higher error 

rates often occurring during periods of high traffic congestion or rapid changes in traffic flow. 

By understanding the step size and frame rate of the simulation, we were able to interpret the simulation 

results and identify areas where the computer vision model may be struggling to accurately predict the 

speed of vehicles. This understanding is critical for making necessary adjustments and improvements to 

the co-simulation setup. 

Co-simulation between Vissim and Carla 9.13 provides valuable insights into the interactions between 

autonomous vehicles and other traffic participants in various traffic scenarios. This approach can be used 

to optimize traffic flow, reduce congestion, and analyze the performance of advanced driver assistance 

systems (ADAS) and autonomous vehicle technologies. However, the accuracy of the simulation results 

depends on the fidelity of the models used in the simulation, and it is essential to validate and improve the 

computer vision model to ensure reliable and accurate results. By further refining the computer vision 

model and the co-simulation setup, the North Carolina Department of Transportation (NCDOT) can 

leverage this technology to improve traffic management and enhance overall transportation efficiency. 
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Recommendations 

Based on the findings and conclusions of this study, we recommend the following actions and areas of 

future research to improve the co-simulation process and achieve better results in traffic management 

and autonomous vehicle technology: 

 To address the increased error rates in higher traffic demand scenarios, it is crucial to refine the 

CV algorithm. Possible improvements include incorporating advanced machine learning 

techniques or incorporating additional sensor data to enhance vehicle detection and tracking 

accuracy in densely packed traffic conditions. 

 To better understand the performance of ADAS and autonomous vehicles in various real-world 

conditions, the co-simulation should be expanded to include a wider range of scenarios. This 

includes different road geometries, weather conditions, and traffic management strategies. 

 A more streamlined and integrated platform for co-simulation between Vissim and Carla 9.13 

would facilitate smoother interaction and data exchange between the two software systems. This 

could result in more efficient simulations and improved overall performance. 

 Future research should also focus on understanding how the integration of autonomous vehicles 

into the traffic mix influences overall traffic flow and congestion. This could provide valuable 

insights into the potential benefits of autonomous vehicle deployment on a larger scale. 

 Engaging industry partners and stakeholders in the development and validation process can 

ensure the practicality and applicability of the co-simulation setup. Collaboration with automotive 

manufacturers, technology companies, and other relevant stakeholders can help align research 

efforts with industry needs and facilitate the transfer of knowledge and technology. 

 The co-simulation setup can also be used to assess the effectiveness of various traffic 

management strategies in different traffic demand scenarios. This can support the development 

of efficient traffic management systems that can accommodate the increasing complexity of road 

traffic and the growing demand for efficient transportation solutions. 

The co-simulation between Vissim and Carla 9.13 offers a promising approach for assessing the 

performance of advanced driver assistance systems (ADAS) and autonomous vehicle technologies in 

various traffic scenarios. By addressing the recommendations outlined above and continuing to refine the 

co-simulation setup, the NCDOT can leverage this technology to improve traffic management, reduce 

congestion, and pave the way for the successful integration of autonomous vehicles into the 

transportation system. 
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Implementation and Technology  
Transfer Plan 

The following items provide a road map for the steps to implement the results of the research in a way 

that will benefit NCDOT’s evaluation and planning capabilities: 

1. Co-simulation Implementation: Integrate the Vissim and Carla 9.13 co-simulation setup into the 

NCDOT's existing traffic management systems. This integration will allow NCDOT to study and 

understand the impact of traffic demand on transportation systems in urban areas. Train NCDOT 

personnel to operate and interpret the co-simulation results. 

 

2. Computer Vision Algorithm Enhancement: Improve the computer vision (CV) algorithm based 

on the error rates obtained from the co-simulation. This will involve refining the CV model to 

accurately detect and track vehicles in densely packed traffic scenarios and improving the 

algorithm's performance at higher speeds or in dense traffic conditions. 

 

3. Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicle Technologies 

Evaluation: Utilize the co-simulation to test and validate ADAS and autonomous vehicle 

technologies. This includes evaluating the performance of these systems in a virtual environment 

before testing them in the real world, which can help to optimize traffic flow and reduce 

congestion. 

 

4. Ground Truth Data Validation: Develop a protocol for validating the accuracy of the co-

simulation results by comparing them with ground truth data. This process will involve comparing 

vehicle speed and count data obtained from the co-simulation with the outputs of a computer 

vision model, which will help to calculate the error of the computer vision model and improve its 

accuracy. 

 

5. Visualization and Analysis Tools: Develop a suite of visualization and analysis tools for 

NCDOT based on the co-simulation results, including: 

 Error rate distribution per sensor 

 Vehicle counts per frame 

 Vehicle frequency by sensor and frame number 

 Error rate of predicted speeds 

 Error rate of predicted speeds per frame 

 

These tools will help NCDOT identify areas of high traffic congestion and evaluate the performance of the 

computer vision model in different traffic conditions. The following should also be taken into consideration: 

 Training and Capacity Building: Provide training and capacity building for NCDOT 

personnel to effectively use the co-simulation, computer vision algorithm, and visualization 

tools. This will involve educating staff on the step size and frame rate of the simulation and 

how these factors affect the interpretation of the simulation results. 

 

 Continuous Improvement and Monitoring: Establish a continuous improvement process 

for the co-simulation setup, computer vision algorithm, and visualization tools. This process 
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will involve regular evaluations of the system's performance and identifying any necessary 

adjustments or improvements. 

 

 Collaboration and Knowledge Sharing: Collaborate with other transportation agencies, 

researchers, and developers to share knowledge and best practices related to traffic 

simulation, autonomous vehicle technologies, and computer vision algorithms. This 

collaboration will help NCDOT stay up to date with the latest advancements in the field and 

ensure that their systems remain at the cutting edge of transportation technology. 

 

 Public Outreach and Education: Develop a public outreach and education program to 

inform the public about the benefits of the co-simulation, ADAS, and autonomous vehicle 

technologies. This program will include presentations, workshops, and materials that explain 

the potential impact of these technologies on traffic management and urban transportation 

systems. 

 

 Stakeholder Engagement: Involve relevant stakeholders, such as city planners, 

transportation engineers, and policymakers, in the development and implementation of the 

co-simulation and associated technologies. By fostering collaboration and communication 

among stakeholders, NCDOT can ensure that the technology transfer and development plan 

aligns with local and regional transportation objectives. 

 

 Pilot Projects and Real-World Testing: Implement pilot projects to test and validate the 

findings from the co-simulation in real-world traffic scenarios. These pilot projects will involve 

deploying ADAS and autonomous vehicle technologies on selected routes, as well as 

monitoring the performance of the computer vision algorithm in real traffic conditions. 

 

 Evaluation and Performance Metrics: Establish a set of evaluation and performance 

metrics to assess the effectiveness of the co-simulation, computer vision algorithm, and 

associated technologies. These metrics will be used to track progress, identify areas for 

improvement, and ensure that the technology transfer and development plan is achieving its 

intended goals. 

 

 Scalability and Adaptability: Develop strategies to scale and adapt the co-simulation and 

associated technologies to accommodate different traffic scenarios and transportation 

systems. This will involve creating flexible, modular components that can be easily adjusted 

to suit the specific needs of various urban and rural environments. 

 

 Funding and Resource Allocation: Secure funding and allocate resources for the 

technology transfer and development plan, ensuring that adequate support is available for the 

implementation, training, and continuous improvement of the co-simulation and associated 

technologies. This may involve seeking grants, partnerships, or other funding sources to help 

offset costs and facilitate the successful execution of the plan. 

 

 Periodic Review and Updates: Conduct periodic reviews of the technology transfer and 

development plan to assess progress and identify any necessary updates or adjustments. 
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This process will ensure that the plan remains relevant, effective, and responsive to the 

changing needs of the NCDOT and the broader transportation landscape. 

 

By following this technology transfer and development plan, the NCDOT can harness the potential of co-

simulation between Vissim and Carla 9.13, as well as the associated computer vision algorithms and 

autonomous vehicle technologies, to improve traffic management, reduce congestion, and enhance 

overall transportation efficiency. 
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